DC/DC Converter Study Guide

Application Notes
 Index

1 Introduction ... 2
2. Types and Characteristics of DC/DC Converters .. 2

3 Basic Operation Principles of DC/DC Converters ... 4
4. Critical Points in Designing DC/DC Converter Circuits .. 5
5. Selecting the Switching Frequency ... 6

6 Selecting the FET .. 9
7. Selecting the Coil.. 11
8. Selecting the SBD... 16
9. Selecting the CL .. 18
10. Selecting the CIN... 20

Appendix Lists of Major External Parts... 25

1. The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this study guide is up to date.
2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this study guide.
3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this study guide.
4. The products in this study guide are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user.
(e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.)
5. Please use the products listed in this study guide within the specified ranges.

Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives.
6. We assume no responsibility for damage or loss due to abnormal use.
7. All rights reserved. No part of this study guide may be copied or reproduced without the prior permission of Torex Semiconductor Ltd.

1 Introduction

This manual provides tips for designing the circuits of $\mathrm{DC} / \mathrm{DC}$ converters. How to design $\mathrm{DC} / \mathrm{DC}$ converter circuits that satisfy the required specifications under a variety of constraints is described by using concrete examples as much as possible.

The properties of $\mathrm{DC} / \mathrm{DC}$ converter circuits (such as efficiency, ripple, and load-transient response) can be changed with their external parts. Optimal external parts are generally dependent of operating conditions (input/output specifications). The power supply circuit is often used as a part of the circuits of the commercially available products and must be designed so that it satisfies the constraints such as size and cost as well as the required electrical specifications. Usually, the standard circuits listed on the catalogs have been designed by selecting such parts that can provide reasonable properties under the standard operating conditions. Those parts are not necessarily optimal under individual operating conditions. Therefore, when designing individual products, the standard circuits must be changed according to their individual specification requirements (such as efficiency, cost, mounting space, etc.). Designing the circuit satisfying the specification requirements usually needs a great deal of expertise and experience. In this manual, which parts to be changed and how to change them to implement required operations, without expertise and experiences, are described by using concrete data. You will be able to operate your converter circuits quickly and successfully without performing complicated circuit calculations. You may verify your design either by carefully calculating later by yourself or having personnel with expertise and experience review for you if you feel uncertain.

2. Types and Characteristics of DC/DC Converters

$\mathrm{DC} / \mathrm{DC}$ converters are available in two circuit types:

Characteristics of individual types are shown in Table 1.
Table 1. Characteristics of DC/DC Converter Circuits

Circuit type	No. of parts (Mounting area)		Cost	Output power	Ripple
	Basic	Small	Low	High	Small
	SEPIC, Zeta	Medium	Medium	Medium	Medium
	Charge pump	Small	Medium	Small	Medium
Isolated	Forward transformer	Large	High	High	Medium
	Fly-back transformer	Medium	Medium	Medium	High

With the basic type circuit, the operation is limited to either stepping up or stepping down to minimize the number of parts, and the input side and the output sides are not insulated. Figure 1 shows a step-up circuit and Figure 2 shows a step-down circuit. These circuits provide advantages such as small size, low cost and small ripples, and the demand for them is increasing in accordance with the needs for downsizing of equipment.

Figure 1: Step-up Circuit

Figure 2: Step-down Circuit

With SEPIC and Zeta, a capacitor is inserted between VIN and VOUT of the step-up circuit and the step-down circuit of the basic type, and a single coil is added. They can be configured as step-up or step-down DC/DC converters by using a step-up DC/DC controller IC and a step-down DC/DC controller IC, respectively. However, as some DC/DC controller ICs do not assume to be used with these circuit types, make sure your DC/DC controller ICs can be used with these circuit types. The capacitor coupling two-coil type has an advantage to allow insulation between VIN and VOUT. However, the increased coils and capacitors will reduce the efficiency. Especially, at the step-down time, the efficiency is substantially reduced, usually to about 70% to 80%.

The charge pump type requires no coil, enabling to minimize the mounting area and height. On the other hand, this type is not liable to provide high efficiency for the applications that need a wide variety of output powers or larger currents, and is limited to applications for driving white LED or for the power supply of LCD.

The insulated type circuit is also known as the primary power supply (main power supply). This type is widely used for the AC/DC converters that generate DC power mainly from a commercially available AC source (100 to 240 VAC) or for the applications that require the insulation between the input side and the output side to eliminate noises. With this type, the input side and the output side are separated by using a transformer, and the stepping up, stepping down, or reverse operation can be controlled by changing the turns ratio of the transformer and the polarity of the diode. Therefore, you can take out many power supplies from a single power circuit. If fly-back transformer is used, the circuit can be composed of a relatively small number of parts and may be used as a secondary power supply (local power supply) circuit. Fly-back transformer, however, requires void to prevent magnetic saturation in the core, increasing its dimensions. If forward transformer is used, a large power source can be easily retrieved. This circuit, however, requires a reset circuit on the primary side to prevent magnetization of the core, increasing the number of parts. Also, the input side and the output side of the controller IC must be grounded separately.

3 Basic Operation Principles of DC/DC Converters

The operating principles of stepping up and stepping down in DC/DC converter circuits will be described using the most basic type. Circuits of other types or those using coils may be considered composed of a combination of step-up circuit and step-down circuit or their applied circuits.

Figure 3 and Figure 4 illustrate the operations of a step-up circuit. Figure 3 shows the current flow when the FET is turned on. The broken line shows a slight leak current that will deteriorate the efficiency at the light- load time. Electric energy is accumulated in L while the FET is turned on. Figure 4 shows the current flow when the FET is turned off. When the FET is turned off, L tries to keep the last current value and the left edge of the coil is forcibly fixed to VIN to supply the power to increase the voltage to VOUT for step-up operation. Therefore, if the FET is being turned on longer, much larger electric current is accumulated in L, allowing retrieval of larger power. However, if the FET is being turned on too long, the time to supply the power to the output side becomes too short, and the loss during this time is increased, deteriorating conversion efficiency. Therefore, the maximum duty (ratio of on/off time) value is generally determined to keep an appropriate value.
With step-up operation, the current flows shown in Figure 3 and Figure 4 are repeated:

Figure 3: Current flow when the FET is turned on in a step-up circuit

Figure 4: Current flow when the FET is turned off in a step-up circuit

Figure 5 and Figure 6 illustrate the operations of a step-down circuit. Figure 5 shows the current flow when the FET is turned on. The broken line shows slight leak current that will deteriorate the efficiency at the light-load condition. Electric energy is accumulated in L while the FET is on and is supplied to the output side. Figure 6 shows the current flow when the FET is turned off. When the FET is turned off, L tries to keep the last current value and turns on the SBD. At this time, the voltage at the left edge of the coil is forcibly dropped below 0 V , reducing the voltage at VOUT. Therefore, if the FET is being turned on longer, much larger electric current is accumulated in L, allowing retrieval of larger power. With a step-down circuit, while the FET is being turned on, power can be supplied to the output side, and the maximum duty needs not to be determined. Therefore, if input voltage is lower than output voltage, the FET is kept on. However, as the step-up operation is disabled, the output voltage is also lowered to the input voltage level or less.

With the step-down operation, the current flows shown in Figure 5 and Figure 6 are repeated:

Figure 5: Current flow when the FET is turned on in a step-down circuit

Figure 6: Current flow when the FET is turned off in a step-down circuit

4. Critical Points in Designing DC/DC Converter Circuits

Among specification requirements for $\mathrm{DC} / \mathrm{DC}$ converter circuits, the following are considered critical:
(1) Stable operation (Not to be broken down by operation failure such as abnormal switching, or burnout or over-voltage)
(2) High efficiency
(3) Small output ripple
(4) Good load-transient response

These properties can be improved to some extent by changing the $\mathrm{DC} / \mathrm{DC}$ converter IC and external parts. Weightings of these four properties vary with individual applications. In the following, let's consider how to select individual parts to improve these properties.

5. Selecting the Switching Frequency

$\mathrm{DC} / \mathrm{DC}$ converter circuits have their unique switching frequencies. In general, they affect the circuit properties as shown in Table 2 below:

Table 2. Relationships between switching frequency and properties

Properties	Low	High
Maximum efficiency	High	Low
Output current at maximum efficiency	Light load	Heavy load
Ripple	Large	Small
Response speed	Slow	Fast

Figure 7 and Figure 8 show the relationships between switching frequencies and efficiencies of the step-down models XC9237A18C(1.2MHz) and XC9237A18D $(3 \mathrm{MHz})$, respectively, as examples. As you see, the Influences of switching frequency on efficiency as indicated in Table 2 are apparent. With two models, electric current values at the maximum efficiency are different. This is because if switching frequencies differ, complying inductance values differ too. With coils of the same structure, the larger the inductance is, the larger the direct-current resistance becomes, increasing the loss at times of heavy-load. Thus, if the switching frequency becomes lower, the current value at the maximum efficiency moves toward the light-load side. On the contrary, if the switching frequency becomes higher, the charge/discharge frequency of the FET and the IC's unique quiescent current increase: On the 3 MHz model, the efficiency at the light-load condition is substantially reduced compared to the 1.2 MHz model. When totally reviewing these influences, we can see that the 1.2 MHz model has a higher maximum efficiency (the peak value is higher than the 3 MHz model on the graph) and the output current at the maximum efficiency is small (the peak is to the leftward of the 3 MHz model on the graph). Also, when PFM is actuated, the frequencies at the light-load time are lowered in both models, substantially improving the efficiencies.

CIN: $10 \mu \mathrm{~F} \quad \mathrm{CL}: 10 \mu \mathrm{~F}$
$\mathrm{L}=4.7 \mu \mathrm{H}$ (NR3015T-4R7M)
Topr $=25^{\circ} \mathrm{C}$

Figure 7: XC9237A18C
VOUT $=1.8 \mathrm{~V} \quad$ (with switching frequency of 1.2 MHz)

Figure 8: XC9237A18D
VOUT $=1.8 \mathrm{~V}$ (with switching frequency of 3 MHz)

Figure 9: Test circuit for XC9237A18C/D illustrated in. Figures 7 and 8

6 Selecting the FET

Efficient $\mathrm{DC} / \mathrm{DC}$ converter circuits may be designed by selecting the absolute maximum ratings of the voltage and the current that are equal to 1.5 to 2 times of the operating voltage and current to reduce the failure rates against spike noises and impulse noises at the switching time, and that minimize the losses by $R_{D S}$ and $C_{\text {ISS. }}$. If $R_{D S}$ and $C_{\text {ISS }}$ are smaller, the losses become smaller. However, the effects of $R_{D S}$ and $C_{\text {ISS }}$ oppose each other. Therefore, it is effective to improve the one whose loss is larger than the other.

Loss by $\mathrm{C}_{\text {ISS }}$ is the power dissipated at the condition of charging/discharging between the gate and the source of the FET and can be expressed with $\mathrm{C}_{\mathrm{ISS}} \mathrm{V}_{\mathrm{GS}}{ }^{2} \mathrm{f} / 2$. Thus, if the driving voltage and the switching frequency become larger, the loss is increased. As the loss values at the heavy-load condition and light-load condition are almost the same, the efficiency at the light-load condition is substantially degraded.

Loss by R_{DS} is the heat dissipated by resistance components between the drain and the source of the FET and is expressed as $\mathrm{RI}_{\mathrm{D}}{ }^{2}$. This loss increases when the load increases. Therefore, it can be said that at the light-load condition, minimizing the loss by $\mathrm{C}_{\text {ISS }}$ is effective for increased efficiency, and at the heavy-load condition, minimizing the loss by R_{DS} is effective.

This is summarized in Table 3 below.

Table 3: Tips for selecting the FET

Items		Tips
Electric properties	$\mathrm{R}_{\mathrm{DS}}, \mathrm{C}_{\text {ISS }}$	Minimize $\mathrm{C}_{\text {ISS }}$ to increase efficiency at the light-load time. Minimize R_{DS} to increase efficiency at the heavy-load time.
	V_{DS}	Select approx. twice the output voltage for a step-up circuit. Select approx. twice the input voltage for a step-down circuit.
	V_{GS}	Select approx. twice the supply voltage for a step-up circuit. Select approx. twice the input voltage for a step-down circuit.
	I_{D}	Select approx. twice the input current for a step-up circuit. Select approx. twice the output current for a step-down circuit.

Input current can be obtained by:
\{Output (load) current \} x (output voltage) \div (input voltage) \div (efficiency)
If efficiency value is unknown, tentatively use 70% at the step-up time and 80% at the step-down time.

Figure 10 shows the graphs of efficiencies measured by replacing only the FET amongst the external parts of XC9220C093 (step-down) circuit shown in Figure 11. The specifications of individual FETs used here are shown in Table 4.

In Figure 11, using a FET with small R_{DS} value enables the driving of a large current, and tends to improve the efficiency at the heavy-load condition to some extent. However, the efficiency at the light-load time is substantially degraded. This result shows that using a FET with a driving capability of unnecessarily large current is not appropriate.

Figure 10: XC9220C093Efficiencies varied with FET

Figure 11: Test circuit for XC9220C093 shown in Figure 10

Table 4: Properties of FETs

Part number	Electric properties		Absolute maximum ratings		
	$\mathrm{R}_{\mathrm{DS}}(\mathrm{m} \Omega)$	$\mathrm{C}_{\mathrm{ISS}}(\mathrm{pF})$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{V})$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{V})$	$\mathrm{I}_{\mathrm{D}}(\mathrm{A})$
XP152A11E5	200	160	-30	± 20	-0.7
XP162A11C0	110	280	-30	± 20	-2.5
XP132A11A1	55	680	-30	± 20	-5

7. Selecting the Coil

An optimal L value varies with switching frequency as the coil current is in proportion to the duration of activation of the FET and is in reverse proportion to the L value.

Loss by coil appears as a sum of the coil's wire-wound resistance RDC and the loss generated in the ferrite core. In switching frequencies of up to 2 MHz , it is considered that the RDC of the coil is mainly responsible for the coil losses. Therefore, firstly select a coil with a small RDC value. However, if minimizing RDC results in selection of too small a L value, the current value while the FET is activated becomes too large, increasing heat losses from the FET, SBD and coil, and reducing the efficiency. Also, the ripple becomes larger due to this increased current.

On the contrary, if the L value is too large, the RDC value becomes larger, degrading the efficiency at the heavy-load time, and magnetic saturation occurs in the ferrite core, rapidly reducing the L value. In this state, the coil cannot properly function, and heat generated by over-current becomes dangerous. Therefore, to allow large current flow in the coil with a large L value, the dimensions of the coil need to be increased to some extent to avoid magnetic saturation.
From the above mentioned, an appropriate L value for an individual switching frequency is determined by considering both dimensions and efficiencies. Table 5 shows the standard L values for individual switching frequencies.

Table 5: Standard L values and rated current values for switching frequencies

Item	Condition	Recommended values		
	Switching frequency	When light-load time weighted	Standard value	When heavy-load time weighted
	$30 \mathrm{kHz}, 50 \mathrm{kHz}$	$330 \mu \mathrm{H}$	$220 \mu \mathrm{H}$	$100 \mu \mathrm{H}$
	100 kHz	$220 \mu \mathrm{H}$	$100 \mu \mathrm{H}$	$47 \mu \mathrm{H}$
	180 kHz	$100 \mu \mathrm{H}$	$47 \mu \mathrm{H}$	$22 \mu \mathrm{H}$
	300 kHz	$47 \mu \mathrm{H}$	$22 \mu \mathrm{H}$	$10 \mu \mathrm{H}$
	500 kHz	$33 \mu \mathrm{H}$	$15 \mu \mathrm{H}$	$6.8 \mu \mathrm{H}$
	600 kHz	$22 \mu \mathrm{H}$	$10 \mu \mathrm{H}$	$4.7 \mu \mathrm{H}$
	900 kHz	$10 \mu \mathrm{H}$	$4.7 \mu \mathrm{H}$	$3.3 \mu \mathrm{H}$
	1.2 MHz	$6.8 \mu \mathrm{H}$	$3.3 \mu \mathrm{H}$	$2.2 \mu \mathrm{H}$
	2 MHz	$3.3 \mu \mathrm{H}$	$2.2 \mu \mathrm{H}$	$1.5 \mu \mathrm{H}$
	3 MHz	$2.2 \mu \mathrm{H}$	$1.5 \mu \mathrm{H}$	$1.0 \mu \mathrm{H}$
Rated current	Step-up circuit	Approx. 2 to 3 times of Max. input current		
	Step-down circuit	Approx. 1.5 to 2 times of Max. output current		

Figure 12 and Figure 13 show examples of variations of efficiency and ripple respectively when only the L value is varied in the XC9104D093 (step-up) circuit shown in Figure 14.

Figure 15 and Figure 16 show the examples of efficiency and ripple in the XC9220A093 (step-down) circuit shown in Figure 17.

In both examples, if the coil structure is identical, increasing the L value decreases the maximum output current, increases the efficiency at the light-load condition, and reduces the ripple. This result shows that selecting the L value optimal for output current is very important.

Figure 12: Relationship between L value and efficiency (step-up:XC9104D093)

Figure 13: Relationship between L value and ripple (step-up: XC9104D093)

Figure 14: Test circuit for XC9104D093 shown in Figures 12 and 13

L: VLF10045T (L:VLF10045T $(22 \mu \mathrm{H}, ~ 33 \mu \mathrm{H}, ~ 47 \mu \mathrm{H})$

Figure 15: XC9220A093 Relationship between L value and efficiency (step-down)

L: VLF $10045 \mathrm{~T}(22 \mu \mathrm{H}, 33 \mu \mathrm{H}, 47 \mu \mathrm{H})$
CL: $22 \mu \mathrm{~F}$, Tr: 2 SJ 616

Figure 16: Relationship between L value and ripple (step-down: XC9220A093)

Figure 17: Figures 15 and 16
Circuit used for measurements shown in XC9220A093 (PWM $=\mathrm{CE}=\mathrm{VIN}$)

8. Selecting the SBD

As to absolute maximum ratings, approximately 1.5 to 2 times of the working ratings should be selected due to the same reason as for selecting the FET. Loss by SBD is the sum of the forward heat loss $\mathrm{VF} \times \mathrm{IF}$ and the reverse leakage current IR. Therefore, selecting smaller values for both VF and IR are desirable. However, VF and IR are in inverse relation to each other, so the choice of the most appropriate SBD will depend on the load current of the application. As VF increases at the heavy-load and IR is constant independent of the load current, selecting a smaller IR value at the light-load condition is effective for improved efficiency, and selecting a smaller VF value is effective at the heavy-load condition. These statements are summarized in Table 6.

Table 6: Tips for selecting the SBD

Item	Tips	
Electrical properties	Selecting V_{F} I_{R}	Select small V_{F} value at the heavy-load . Select small I_{R} value at the light-load.
Absolute ratings	V_{RM}	Select approx. 2 or more times of output voltage for a step-up Select approx. 2 or more times of input voltage for a step-down
	I_{FM}	Select approx. 2 or more times of input current for a step-up Select approx. 1.5 or more times of output current for a step-down

Figure 18 shows the variation of efficiency in the XC9220A093 circuit when only the SBD properties shown in Table 7 are changed. The result shows that the efficiency of the XBS204S17, having larger VF and smaller IR compared to the XBS203V17, is excellent under light-load conditions but is degraded under heavy-load conditions.

Figure 18: XC9220A093 efficiencies resulting from SBDs' characteristics

Figure 19: Test circuit XC9220A093 shown in Figure 18

Table 7: SBD Properties used for measurements shown in Figure 18

Part number	Characteristics		Electrical properties		
	Absolute maximum ratings				
	$\mathrm{V}_{\mathrm{F}}\left(\mathrm{I}_{\mathrm{F}}=2 \mathrm{~A}\right)$	$\mathrm{I}_{\mathrm{R}}\left(\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}\right)$	V_{R}	I_{F}	
XBS203V17(TOREX)	0.35 V	$150 \mu \mathrm{~A}$	30 V	2 A	
XBS204S17(TOREX)	0.485 V	$2.5 \mu \mathrm{~A}$	40 V	2 A	

9. Selecting the CL

If a larger CL value is selected, the output ripple becomes smaller. However, an unnecessarily large CL value increases the dimensions of the capacitor, increasing the cost. Determine the CL value based on the targeted ripple level. If the targeted ripple level is to be in the range of 10 mV to 40 mV , you may begin by using the CL values shown in Table 8 and Table 9 for a step-up and for a step-down, respectively. Note: If your DC/DC converter is not compatible with low ESR capacitors, using these CL values may cause abnormal switching. If a low ESR capacitor is to be used in the continuous mode, check the load-transient response to confirm that the output voltage is rapidly stabilized (converges within two switching cycles).

Figure 20 shows the variation of output ripple measured by changing only the CL in the XC9104D093 circuit shown in Figure 21. The ripple increases in proportion to the ESR value and in inverse proportion to the CL value. In the case of an aluminum electrolytic capacitor, the ESR value is so large that a ceramic capacitor connected in parallel is required for getting output current.

Table 8: Recommended CL values for a step-up

Output current Types of capacitors	Ceramic	OS	Tantalum	Aluminum electrolytic
$0 \mathrm{~mA}-300 \mathrm{~mA}$	$20 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}+2.2 \mu \mathrm{~F}$ (with ceramic capacitor)
$300 \mathrm{~mA}-600 \mathrm{~mA}$	$30 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$94 \mu \mathrm{~F}$	$150 \mu \mathrm{~F}+2.2 \mu \mathrm{~F}$ (with ceramic capacitor)
$600 \mathrm{~mA}-900 \mathrm{~mA}$	$40 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}$	$150 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}+4.7 \mu \mathrm{~F}$ (with ceramic capacitor)
$900 \mathrm{~mA}-1.2 \mathrm{~A}$	$50 \mu \mathrm{~F}$	$150 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}$	$470 \mu \mathrm{~F}+4.7 \mu \mathrm{~F}$ (with ceramic capacitor)

Actual values to be used are obtained by multiplying the above values by the step-up ratio ($=\mathrm{V}_{\text {OUT }} / \mathrm{V}_{\text {IN }}$).

Table 9: Recommended CL values for a step-down

Types of capacitors		Ceramic	OS	Tantalum
$0 \mathrm{~mA}-500 \mathrm{~mA}$	$10 \mu \mathrm{~F}$	$15 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}+2.2 \mu \mathrm{~F}$ (with ceramic capacitor)
$500 \mathrm{~mA}-1.5 \mathrm{~A}$	$20 \mu \mathrm{~F}$	$22 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}+2.2 \mu \mathrm{~F}$ (with ceramic capacitor)
$1.5 \mathrm{~A}-3 \mathrm{~A}$	$20 \mu \mathrm{~F}$	$33 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$100 \mu \mathrm{~F}+4.7 \mu \mathrm{~F}$ (with ceramic capacitor)
$3 \mathrm{~A}-5 \mathrm{~A}$	$30 \mu \mathrm{~F}$	$47 \mu \mathrm{~F}$	$68 \mu \mathrm{~F}$	$220 \mu \mathrm{~F}+4.7 \mu \mathrm{~F}$ (with ceramic capacitor)

Figure 20: Output ripple varied with CL value (XC9104D093)

Figure 21: Test circuit for XC9104D093 shown in Figure 20

10. Selecting the CIN

Although its influence on output stability is not as significant as CL, CIN also has a large capacity, and the smaller the ESR is, the more the output is stabilized and the smaller the ripple voltage becomes. Increasing CIN to some extent will reduce the effect of minimizing the output ripple. In order to prevent EMI on the input side, the CIN value should start with about half that of the CL value. Figure 22 shows how the ripple level on the input side varies with the CIN value measured in the circuit shown in Figure 23. This data is usually not verified but is important for reducing EMI. With CIN, even if ESR is too small, the output will not oscillate. Therefore, using capacitors with ESR as small as possible is recommended.

Figure 22: XC9104D093 Input ripple varied with $\mathrm{C}_{\text {IN }}$ value

Figure 23 Test circuit for XC9104D093 shown in Figure 22

11. Selecting the $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$

With an FB (feedback) model, $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ are used to determine output voltage. If a wide variety of combinations of $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ are available for an identical output voltage, the sum of $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ is recommended to be in the range of $150 \mathrm{k} \Omega$ to $500 \mathrm{k} \Omega$. In this case, the efficiency at the light-load condition and the output stability at the heavy-load condition need to be considered. The currents flowing through $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ are not used for the output power and regarded as loss of the DC/DC converter. Therefore, to improve the efficiency at the light-load condition, larger values $\left(\mathrm{R}_{\mathrm{FB} 1}+\mathrm{R}_{\mathrm{FB} 2}<1 \mathrm{M} \Omega\right)$ should be selected. To improve transient response at the heavy-load condition, $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{R}_{\mathrm{FB} 2}$ should be a factor 10 lower than the standard values, sacrificing the efficiency at the light-load condition, to improve the voltage stability at the FB terminal.

12. Selecting the C_{FB}

C_{FB} is a capacitor for adjusting the ripple feedback and influences the load-transient response. The optimum $C_{F B}$ values for L values are shown in Table 10. Selecting $C_{F B}$ values either smaller or larger than the optimum values will deteriorate the operation stability.

Influences of C_{FB} in the XC 9220 C 093 have been measured in the circuit shown in Figure 27. In this circuit, when RFB1 is $82 \mathrm{k} \Omega, \mathrm{F}_{\text {ZFB }}$ will be 10 kHz with CFB of about 390 pF . Load-transient responses varied with C_{FB} are shown in Figure $24(\mathrm{CFB}=39 \mathrm{pF})$, Figure $25(\mathrm{CFB}=390 \mathrm{pF})$ and Figure $26\left(\mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}\right)$. With $\mathrm{C}_{\mathrm{FB}}=39 \mathrm{pF}$, the voltage drops sharply when the load becomes heavy but the normal voltage is restored shortly. With $\mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}$, the voltage drop is small when the load current is increased heavily but restoration of the normal voltage takes time.

It seems that there are some special cases where influence of ripple fed back to the FB terminal by C_{FB} at the heavy-load time is too large, making the output unstable. In those cases, stable operation may be obtained by disconnecting C_{FB}. Though the required load current and transient response properties must be considered in the end, starting with standard C_{FB} is recommended.

Table 10: Standard $\mathrm{F}_{\text {ZFB }}$ for determining optimum C_{FB}

Part Number \quad Item	$\mathrm{F}_{\mathrm{ZFB}}=\left(1 /\left(2 \times \pi \times \mathrm{R}_{\mathrm{FB} 1} \times \mathrm{C}_{\mathrm{FB}}\right)\right)$ () indicates the adjustable range.
$\begin{aligned} & \text { XC9103/04/05 } \\ & \text { XC9106/07 } \end{aligned}$	30 kHz when $\mathrm{L}=10 \mu \mathrm{H}$ 20 kHz when $\mathrm{L}=22 \mu \mathrm{H}$ 10 kHz when $\mathrm{L}=47 \mu \mathrm{H}$
XC9101D09A	10 kHz
XC9201D09A	10 kHz
XC9210B092	12 kHz
XC9210B093	(Adjustable between 1 kHz and 50 kHz)
XC9213B093	10 kHz (Adjustable between 1 kHz and 50 kHz)
XC6365B/D	10 kHz
XC6366B/D	(Adjustable between 0.5 kHz and 20 kHz)
XC6367B/D	10 kHz
XC6368B/D	(Adjustable between 0.1 kHz and 20 kHz)
XC9220/21	(Adjustable between 1 kHz and 20 kHz)
XC9223/24	20 kHz (Adjustable between 1 kHz and 50 kHz)

Figure24: Load-transient response of XC9220C093
$\left(\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}\right.$ to $\left.200 \mathrm{~mA}, \mathrm{C}_{\mathrm{FB}}=39 \mathrm{pF}\right)$

Figure 25: Load-transient response of XC9220C093

$$
\left(\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \text { to } 200 \mathrm{~mA}, \mathrm{C}_{\mathrm{FB}}=390 \mathrm{pF}\right)
$$

Figure26: Load-transient response of XC9220C093
$\left(\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}\right.$ to $\left.200 \mathrm{~mA}, \mathrm{C}_{\mathrm{FB}}=1000 \mathrm{pF}\right)$

Figure 27: Test circuit for XC9220C093 Figures 24 through 26

Figure 28 shows the standard C_{FB} values varied with $\mathrm{R}_{\mathrm{FB} 1}$ and $\mathrm{F}_{\mathrm{ZFB}}$.

Figure 28: Relationship between RFB1 and CFB

Appendix Lists of Major External Parts

(1) FETs

Part number	Manufacturer	$\mathrm{V}_{\mathrm{DSS}}$	$\mathrm{V}_{\mathrm{GSS}}$	I_{D}	R_{DS}	Max. dimensions
XP152A11E5	TOREX	-30 V	$\pm 20 \mathrm{~V}$	-0.7 A	$350 \mathrm{~m} \Omega(\mathrm{VGS}=-4.5 \mathrm{~V})$	$3.1 \times 3.0 \times 1.2 \mathrm{H}$
XP162A11C0	TOREX	-30 V	$\pm 20 \mathrm{~V}$	-2.5 A	$200 \mathrm{~m} \Omega(\mathrm{VGS}=-4.5 \mathrm{~V})$	$4.6 \times 4.25 \times 1.6 \mathrm{H}$
XP132A11A1	TOREX	-30 V	$\pm 20 \mathrm{~V}$	-5 A	$95 \mathrm{~m} \Omega(\mathrm{VGS}=-4.5 \mathrm{~V})$	$5.5 \times 6.5 \times 1.73 \mathrm{H}$
XP161A1355	TOREX	20 V	$\pm 8 \mathrm{~V}$	4 A	$100 \mathrm{~m} \Omega(\mathrm{VGS}=1.5 \mathrm{~V})$	$4.6 \times 4.25 \times 1.6 \mathrm{H}$
2 SJ616	SANYO	30 V	20 V	6 A	$105 \mathrm{~m} \Omega(\mathrm{VGS}=-4 \mathrm{~V})$	$4.5 \times 4.25 \times 1.5 \mathrm{H}$

(2) SBDs

Part number	Manufacturer	V_{RM}	I_{FM}	$\mathrm{V}_{\mathrm{F}}\left(\mathrm{I}_{\mathrm{F}}=100 \mathrm{~mA}\right)$	$\mathrm{I}_{\mathrm{R}}\left(\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}\right)$	Max. dimensions
XBS203V17	TOREX	30 V	2 A	0.225 V	$55 \mu \mathrm{~A}$	$2.79 \times 5.2 \times 2.2 \mathrm{H}$
XBS204S17	TOREX	40 V	2 A	0.325 V	$1.5 \mu \mathrm{~A}$	$2.79 \times 5.2 \times 2.2 \mathrm{H}$
XBS303V17	TOREX	30 V	3 A	0.22 V	$72 \mu \mathrm{~A}$	$2.79 \mathrm{x} 5.2 \times 2.2 \mathrm{H}$
XBS304S17	TOREX	40 V	3 A	0.3 V	$1.3 \mu \mathrm{~A}$	$2.79 \times 5.2 \times 2.2 \mathrm{H}$
D1FH3	SHINDENGEN	30 V	3 A	0.20 V	$150 \mu \mathrm{~A}$	$2.8 \times 5.3 \times 2.3 \mathrm{H}$

(3) Coils

Part number	Manufacturer	Inductance	Rated current	R_{DC}	Max. dimensions
CDRH4D18C-4R7	SUMIDA	$4.7 \mu \mathrm{H}$	1.15 A	$88 \mathrm{~m} \Omega$	$5.1 \times 5.1 \times 2.0 \mathrm{H}$
CDRH8D28-220	SUMIDA	$22 \mu \mathrm{H}$	1.6 A	$76 \mathrm{~m} \Omega$	$8.3 \times 8.3 \times 3.0 \mathrm{H}$
CDRH127-220	SUMIDA	$22 \mu \mathrm{H}$	3.6 A	$32 \mathrm{~m} \Omega$	$12.3 \times 12.3 \times 8.0 \mathrm{H}$
VLF10045T-100M4R3	TDK	$10 \mu \mathrm{H}$	$4.3 \mathrm{~A}(\max)$	$25 \mathrm{~m} \Omega$	$10.4 \times 10.1 \times 4.5 \mathrm{H}$
VLF10045T-220M2R8	TDK	$22 \mu \mathrm{H}$	$2.8 \mathrm{~A}(\max)$	$49.5 \mathrm{~m} \Omega$	$10.4 \times 10.1 \times 4.5 \mathrm{H}$
VLF10045T-470M1R9	TDK	$47 \mu \mathrm{H}$	$1.9 \mathrm{~A}(\max)$	$97.6 \mathrm{~m} \Omega$	$10.4 \times 10.1 \times 4.5 \mathrm{H}$
NR3010T-1R5M	TAIYO YUDEN	$1.5 \mu \mathrm{H}$	1.2 A	$80 \mathrm{~m} \Omega$	$3.1 \times 3.1 \times 1.0 \mathrm{H}$

(4) Ceramic capacitors

Part number	Manufacturer	Capacity	Rated voltage	Max. dimensions
C3216JB0J226M	TDK	$22 \mu \mathrm{~F}$	6.3 V	$3.4 \times 1.8 \times 0.95 \mathrm{H}$
C5750X5R1C476M	TDK	$47 \mu \mathrm{~F}$	16 V	$6.1 \times 5.4 \times 2.5 \mathrm{H}$
EMK107BJ105KA	TAIYO YUDEN	$1 \mu \mathrm{~F}$	16 V	$1.7 \times 0.9 \times 0.9 \mathrm{H}$
EMK212BJ106KG	TAIYO YUDEN	$10 \mu \mathrm{~F}$	16 V	$2.1 \times 1.35 \times 1.35 \mathrm{H}$
LMK212BJ-106KG	TAIYO YUDEN	$10 \mu \mathrm{~F}$	10 V	$2.1 \times 1.35 \times 1.35 \mathrm{H}$
JMK212BJ-106MG	TAIYO YUDEN	$10 \mu \mathrm{~F}$	6.3 V	$2.1 \times 1.35 \times 1.35 \mathrm{H}$
TMK107BJ105KA	TAIYO YUDEN	$1 \mu \mathrm{~F}$	25 V	$1.7 \times 0.9 \times 0.9 \mathrm{H}$
EMK316BJ226ML	TAIYO YUDEN	$22 \mu \mathrm{~F}$	16 V	$3.25 \times 1.75 \times 1.8 \mathrm{H}$

(5) OS capacitors

Part number	Manufacturer	Capacity	Rated voltage	ESR	Max. dimensions
10TPB68MC	SANYO	$68 \mu \mathrm{~F}$	10 V	$55 \mathrm{~m} \Omega$	$6.2 \times 3.4 \times 3.0 \mathrm{H}$
16 TQC 47 MC	SANYO	$47 \mu \mathrm{~F}$	16 V	$70 \mathrm{~m} \Omega$	$7.5 \times 4.5 \times 2.0 \mathrm{H}$

(6) Aluminum electrolytic capacitor

Part number	Manufacturer	Capacity	Rated voltage	ESR	Max. dimensions
LXZ10VB220MF11	NIPPON CHEMI-CON	$220 \mu \mathrm{~F}$	10 V	$250 \mathrm{~m} \Omega$	$\varphi 6.3 \times 13.0$

TOREX Technology

TOREX SEMICONDUCTOR LTD.
 TOKYO Head Office

8F Sakuranihonbashi Bldg., 1-13-12 Nihonbashikayabacho, Chuo-ku, Tokyo 103-0025, Japan
TEL: +81-3-5652-8730 FAX: +81-3-5652-8731
TOREX SEMICONDUCTOR EUROPE LIMITED
Unit 1,The Courtyard Whitwick Business Park Stenson Road Coalville Leicestershire LE67 4JP UK TEL: +44-1530-510190 FAX: +44-1530-512400

TOREX USA Corp.

5 Corporate Park Suite 160 Irvine,CA 92606 USA
TEL: +1-949-261-2022 FAX: +1-949-261-2066
TOREX SEMICONDUCTOR (S)PTE LTD.
60 Kaki Bukit Place Eunos Techpark \#05-17/18 Singapore 415979
TEL: +65-6745-1352 FAX: +65-6741-0389
TOREX (HONG KONG)LIMITED
Units 505, Energy Plaza, 92 Granville Road, TST East, Kowloon, HK
TEL: +852-2312-7489 FAX: +852-2312-7589

